Movie Theater: Hubble 2005

About This Video
From the discovery of Sedna, a distant object rotating with puzzling slowness, to theories about the death of the universe based on observation of supernova remnants, 2004 was a big year for Hubble science. This third installment in the Hubble yearbook series covers these topics and more.

 

Hubble Space Telescope

From Wikipedia, the free encyclopedia

Hubble Space Telescope
HST-SM4.jpeg
The Hubble Space Telescope as seen from the departing Space Shuttle Atlantis, flying Servicing Mission 4 (STS-125), the fifth and final human spaceflight to visit the observatory.
General information
NSSDC ID 1990-037B

Organization NASA / ESA / STScI
Launch date April 24, 1990, 8:33:51 am EDT
Launch vehicle Space Shuttle Discovery (STS-31)
Mission length 21 years, 2 months and 15 days elapsed
Deorbited due ~2013–2021
Mass 11,110 kg (24,500 lb)
Type of orbit Near-circular low Earth orbit
Orbit height 559 km (347 mi)
Orbit period 96–97 minutes (14-15 periods per day)
Orbit velocity 7,500 m/s (25,000 ft/s)
Acceleration due to gravity 8.169 m/s2 (26.80 ft/s2)
Location Low Earth orbit
Telescope style Ritchey-Chrétien reflector
Wavelength Optical, ultraviolet, near-infrared
Diameter 2.4 m (7 ft 10 in)
Collecting area 4.5 m2 (48 sq ft)
Focal length 57.6 m (189 ft)
Instruments
NICMOS infrared camera/spectrometer
ACS optical survey camera
(partially failed)
WFC3 wide field optical camera
COS ultraviolet spectrograph
STIS optical spectrometer/camera
FGS three fine guidance sensors
Website hubble.nasa.gov

hubblesite.org

spacetelescope.org

 

The Hubble Space Telescope (HST) is a space telescope that was carried into orbit by a space shuttle in 1990. Although not the first space telescope, Hubble is one of the largest and most versatile, and is well-known as both a vital research tool and a public relations boon for astronomy. The HST was built by the United States space agency NASA, with contributions from the European Space Agency, and is operated by the Space Telescope Science Institute. It is named after the astronomer Edwin Hubble. The HST is one of NASA’s Great Observatories, along with the Compton Gamma Ray Observatory, the Chandra X-ray Observatory, and the Spitzer Space Telescope.
Space telescopes were proposed as early as 1923. Hubble was funded in the 1970s, with a proposed launch in 1983, but the project was beset by technical delays, budget problems, and the Challenger disaster. When finally launched in 1990, scientists found that the main mirror had been ground incorrectly, severely compromising the telescope’s capabilities. However, after a servicing mission in 1993, the telescope was restored to its intended quality. Hubble’s orbit outside the distortion of Earth’s atmosphere allows it to take extremely sharp images with almost no background light. Hubble’s Ultra Deep Field image, for instance, is the most detailed visible-light image ever made of the universe’s most distant objects. Many Hubble observations have led to breakthroughs in astrophysics, such as accurately determining the rate of expansion of the universe.
Hubble is the only telescope designed to be serviced in space by astronauts. Four servicing missions were performed from 1993 to 2002, but the fifth was canceled on safety grounds following the Columbia disaster. However, after spirited public discussion, NASA administrator Mike Griffin approved one final servicing mission, completed in 2009. The telescope is now expected to function until at least 2014. Its scientific successor, the James Webb Space Telescope (JWST), is due to be launched by 2018.

Lyman Spitzer, “father” of the Space Telescope

The history of the Hubble Space Telescope can be traced back as far as 1946, when the astronomer Lyman Spitzer wrote the paper “Astronomical advantages of an extraterrestrial observatory”. In it, he discussed the two main advantages that a space-based observatory would have over ground-based telescopes. First, the angular resolution (smallest separation at which objects can be clearly distinguished) would be limited only by diffraction, rather than by the turbulence in the atmosphere, which causes stars to twinkle and is known to astronomers as seeing. At that time ground-based telescopes were limited to resolutions of 0.5–1.0 arcseconds, compared to a theoretical diffraction-limited resolution of about 0.05 arcsec for a telescope with a mirror 2.5 m in diameter. Second, a space-based telescope could observe infrared and ultraviolet light, which are strongly absorbed by the atmosphere.
Spitzer devoted much of his career to pushing for a space telescope to be developed. In 1962 a report by the United States National Academy of Sciences recommended the development of a space telescope as part of the space program, and in 1965 Spitzer was appointed as head of a committee given the task of defining the scientific objectives for a large space telescope.
Space-based astronomy had begun on a very small scale following World War II, as scientists made use of developments that had taken place in rocket technology. The first ultraviolet spectrum of the Sun was obtained in 1946, and NASA launched the Orbiting Solar Observatory to obtain UV, X-ray, and gamma-ray spectra in 1962. An orbiting solar telescope was launched in 1962 by the United Kingdom as part of the Ariel space program, and in 1966 National Aeronautics and Space Administration (NASA) launched the first Orbiting Astronomical Observatory (OAO) mission. OAO-1’s battery failed after three days, terminating the mission. It was followed by OAO-2, which carried out ultraviolet observations of stars and galaxies from its launch in 1968 until 1972, well beyond its original planned lifetime of one year.
The OSO and OAO missions demonstrated the important role space-based observations could play in astronomy, and 1968 saw the development by NASA of firm plans for a space-based reflecting telescope with a mirror 3 m in diameter, known provisionally as the Large Orbiting Telescope or Large Space Telescope (LST), with a launch slated for 1979. These plans emphasized the need for manned maintenance missions to the telescope to ensure such a costly program had a lengthy working life, and the concurrent development of plans for the reusable space shuttle indicated that the technology to allow this was soon to become available.

 Quest for funding

The continuing success of the OAO program encouraged increasingly strong consensus within the astronomical community that the LST should be a major goal. In 1970 NASA established two committees, one to plan the engineering side of the space telescope project, and the other to determine the scientific goals of the mission. Once these had been established, the next hurdle for NASA was to obtain funding for the instrument, which would be far more costly than any Earth-based telescope. The US Congress questioned many aspects of the proposed budget for the telescope and forced cuts in the budget for the planning stages, which at the time consisted of very detailed studies of potential instruments and hardware for the telescope. In 1974, public spending cuts instigated by Gerald Ford led to Congress cutting all funding for the telescope project.
In response to this, a nationwide lobbying effort was coordinated among astronomers. Many astronomers met congressmen and senators in person, and large scale letter-writing campaigns were organized. The National Academy of Sciences published a report emphasizing the need for a space telescope, and eventually the Senate agreed to half of the budget that had originally been approved by Congress.
The funding issues led to something of a reduction in the scale of the project, with the proposed mirror diameter reduced from 3 m to 2.4 m, both to cut costs  and to allow a more compact and effective configuration for the telescope hardware. A proposed precursor 1.5 m space telescope to test the systems to be used on the main satellite was dropped, and budgetary concerns also prompted collaboration with the European Space Agency. ESA agreed to provide funding and supply one of the first generation instruments for the telescope, as well as the solar cells that would power it, and staff to work on the telescope in the United States, in return for European astronomers being guaranteed at least 15% of the observing time on the telescope. Congress eventually approved funding of US$36,000,000 for 1978, and the design of the LST began in earnest, aiming for a launch date of 1983. In 1983 the telescope was named after Edwin Hubble, who made one of the greatest scientific breakthroughs of the 20th century when he discovered that the universe is expanding.

 Construction and engineering

Polishing of Hubble’s primary mirror begins at Perkin-Elmer corporation, Danbury, Connecticut, March 1979. The engineer pictured is Dr. Martin Yellin, an optical engineer working for Perkin-Elmer on the project.

Once the Space Telescope project had been given the go-ahead, work on the program was divided among many institutions. Marshall Space Flight Center (MSFC) was given responsibility for the design, development, and construction of the telescope, while the Goddard Space Flight Center was given overall control of the scientific instruments and ground-control center for the mission. MSFC commissioned the optics company Perkin-Elmer to design and build the Optical Telescope Assembly (OTA) and Fine Guidance Sensors for the space telescope. Lockheed was commissioned to construct and integrate the spacecraft in which the telescope would be housed.

Optical Telescope Assembly (OTA)

Optically, the HST is a Cassegrain reflector of Ritchey-Chrétien design, as are most large professional telescopes. This design, with two hyperbolic mirrors, is known for good imaging performance over a wide field of view, with the disadvantage that the mirrors have shapes that are hard to fabricate and test. The mirror and optical systems of the telescope determine the final performance, and they were designed to exacting specifications. Optical telescopes typically have mirrors polished to an accuracy of about a tenth of the wavelength of visible light, but the Space Telescope was to be used for observations from the visible through the ultraviolet (shorter wavelengths) and was specified to be diffraction limited to take full advantage of the space environment. Therefore its mirror needed to be polished to an accuracy of 10 nanometres, or about 1/65 of the wavelength of red light. On the long wavelength end, the OTA was not designed with optimum IR performance in mind — for example, the mirrors are kept at stable (and warm, about 15 °C) temperatures by heaters. This limits Hubble’s performance as an infrared telescope.
Perkin-Elmer intended to use custom-built and extremely sophisticated computer-controlled polishing machines to grind the mirror to the required shape. However, in case their cutting-edge technology ran into difficulties, NASA demanded that PE sub-contract to Kodak to construct a back-up mirror using traditional mirror-polishing techniques. (The team of Kodak and Itek also bid on the original mirror polishing work. Their bid called for the two companies to double-check each other’s work, which would have almost certainly caught the polishing error that later caused such problems. The Kodak mirror is now on permanent display at the Smithsonian Institution. An Itek mirror built as part of the effort is now used in the 2.4 m telescope at the Magdalena Ridge Observatory.
Construction of the Perkin-Elmer mirror began in 1979, starting with a blank manufactured by Corning from their ultra-low expansion glass. To keep the mirror’s weight to a minimum it consisted of inch-thick top and bottom plates sandwiching a honeycomb lattice. Perkin-Elmer simulated microgravity by supporting the mirror on both sides with 138 rods that exerted varying amounts of force. This ensured that the mirror’s final shape would be correct and to specification when finally deployed. Mirror polishing continued until May 1981. NASA reports at the time questioned Perkin-Elmer’s managerial structure, and the polishing began to slip behind schedule and over budget. To save money, NASA halted work on the back-up mirror and put the launch date of the telescope back to October 1984. The mirror was completed by the end of 1981; it was washed using 2,400 gallons (9,100 L) of hot, deionized water and then received a reflective coating of aluminium 65 nm-thick and a protective coating of magnesium fluoride 25 nm-thick.

Construction of Hubble. The optical metering truss and secondary baffle are visible.

Doubts continued to be expressed about Perkin-Elmer’s competence on a project of this importance, as their budget and timescale for producing the rest of the OTA continued to inflate. In response to a schedule described as “unsettled and changing daily”, NASA postponed the launch date of the telescope until April 1985. Perkin-Elmer’s schedules continued to slip at a rate of about one month per quarter, and at times delays reached one day for each day of work. NASA was forced to postpone the launch date until first March and then September 1986. By this time the total project budget had risen to US$1.175 billion.

 Spacecraft systems

The spacecraft in which the telescope and instruments were to be housed was another major engineering challenge. It would have to adequately withstand frequent passages from direct sunlight into the darkness of Earth’s shadow, which would generate major changes in temperature, while being stable enough to allow extremely accurate pointing of the telescope. A shroud of multi-layer insulation keeps the temperature within the telescope stable, and surrounds a light aluminum shell in which the telescope and instruments sit. Within the shell, a graphite-epoxy frame keeps the working parts of the telescope firmly aligned. Because graphite composites are hygroscopic, there was a risk that water vapor absorbed by the truss while in Lockheed’s clean room would later be expressed in the vacuum of space; the telescope’s instruments would be covered in ice. To reduce that risk, a nitrogen gas purge was performed prior to launching the telescope into space.

Exploded view of the Hubble Telescope.

While construction of the spacecraft in which the telescope and instruments would be housed proceeded somewhat more smoothly than the construction of the OTA, Lockheed still experienced some budget and schedule slippage, and by the summer of 1985, construction of the spacecraft was 30% over budget and three months behind schedule. An MSFC report said that Lockheed tended to rely on NASA directions rather than take their own initiative in the construction.

Initial instruments

Main articles: Wide Field and Planetary Camera, Goddard High Resolution Spectrograph, High Speed Photometer, Faint Object Camera, and Faint Object Spectrograph

When launched, the HST carried five scientific instruments: the Wide Field and Planetary Camera (WF/PC), Goddard High Resolution Spectrograph (GHRS), High Speed Photometer (HSP), Faint Object Camera (FOC) and the Faint Object Spectrograph (FOS). WF/PC was a high-resolution imaging device primarily intended for optical observations. It was built by NASA’s Jet Propulsion Laboratory, and incorporated a set of 48 filters isolating spectral lines of particular astrophysical interest. The instrument contained eight charge-coupled device (CCD) chips divided between two cameras, each using four CCDs. The “wide field camera” (WFC) covered a large angular field at the expense of resolution, while the “planetary camera” (PC) took images at a longer effective focal length than the WF chips, giving it a greater magnification.
The GHRS was a spectrograph designed to operate in the ultraviolet. It was built by the Goddard Space Flight Center and could achieve a spectral resolution of 90,000. Also optimized for ultraviolet observations were the FOC and FOS, which were capable of the highest spatial resolution of any instruments on Hubble. Rather than CCDs these three instruments used photon-counting digicons as their detectors. The FOC was constructed by ESA, while the University of California, San Diego and the Martin Marietta corporation built the FOS.
The final instrument was the HSP, designed and built at the University of Wisconsin–Madison. It was optimized for visible and ultraviolet light observations of variable stars and other astronomical objects varying in brightness. It could take up to 100,000 measurements per second with a photometric accuracy of about 2% or better.
HST’s guidance system can also be used as a scientific instrument. Its three Fine Guidance Sensors (FGS) are primarily used to keep the telescope accurately pointed during an observation, but can also be used to carry out extremely accurate astrometry; measurements accurate to within 0.0003 arcseconds have been achieved.

 Ground support

Hubble’s low orbit means many targets are visible for somewhat less than half of elapsed time, since they are blocked from view by the Earth for one-half of each orbit.

READ THE REST OF THE ARTICLE CLICK HERE

[wysija_form id=”1″]

no comment

Add your comment